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Abstract
It is well known that the magnetizations as a function of the valence electron
number per atom of 3d transition metal substitutional alloys form the so-called
Slater–Pauling curve. Similarly, the Curie temperatures of these alloys also
show systematic behaviour against the valence electron number. Though this
fact has long been known, no attempt has been made so far to explain this
behaviour from first principles. In this paper we calculate TC of 3d transition
metal alloys in the framework of first-principles electronic structure calculation
based on the local density approximation.

1. Introduction

It is well known that the magnetizations as a function of the valence electron number per
atom of 3d transition metal substitutional alloys form the so-called Slater–Pauling curve.
Similarly, the Curie temperatures of these alloy systems also show systematic Slater–Pauling-
like behaviour against the valence electron number. Though the whole shape of the Slater–
Pauling curve for the Curie temperature resembles that of the magnetization, details of their
behaviours are different. While the magnetizations fall roughly on a common curve as a
function of the electron number, the Curie temperatures behave differently depending on the
system. This fact implies that Curie temperatures depend not only on the magnetization but also
on the magnetic exchange interaction coefficients that differ from system to system. Though
the behaviour of the magnetization of 3d transition metal alloys is well explained from first
principles [1–3], no similar attempt has been made so far to explain the behaviour of the Curie
temperature.

Recently, calculation of the magnetic transition temperature using the exchange coupling
constants obtained from first-principles calculation in the framework of the local density
functional approximation (LDA) of the density functional method was applied to various
metallic systems [4, 5]. In many cases the results seem to be fairly consistent with
experimentally observed Curie or Néel temperatures. In this study, we apply a similar

0953-8984/07/365233+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/36/365233
mailto:chie@presto.phys.sci.osaka-u.ac.jp
http://stacks.iop.org/JPhysCM/19/365233


J. Phys.: Condens. Matter 19 (2007) 365233 C Takahashi et al

23 24 25 26 27 28 29
0

500

1000

1500

23 24 25 26 27 28 29
0

500

1000

1500

FeCo(bcc) FeCo(fcc)

FeNi(bcc)

FeNi(fcc)

FeV FeCr

MnNi

CoNi

NiCu

FeV

FeCr

FeCo(fcc)

CoNi

FeNi

MnNi
NiCu

(a) Theory

(b) Experiment

Electrons / Atom

Electrons / Atom

C
ur

ie
 te

m
pe

ra
tu

re
 (

K
)

C
ur

ie
 te

m
pe

ra
tu

re
 (

K
)

FeCo(bcc)

αγ phase boundary

Figure 1. Theoretical and experimental [8] Curie temperatures.

approach to 3d transition metal alloys in order to explain the systematic behaviour of the Curie
temperature.

2. Calculation

We calculated the electronic structure of 3d transition metal alloys using the Korringa–
Kohn–Rostoker method combined with the coherent potential approximation and the local
density approximation (KKR-CPA-LDA method) [1, 3]. From the obtained spin density
distributions, the exchange coupling constants Ji j were calculated with the method proposed by
Liechtenstein [4]. The Ji j s thus obtained were used as inputs to calculate the Curie temperature
TC in the framework of the cluster-like approximation (CA) proposed by Mano [6, 7].

While the original work by Mano supposed systems composed of Ising spins, we consider
classical spins. This needs a small modification of the formalism. In addition, we have to
treat two kinds of magnetic ions while the original work treated a single kind of magnetic
ion in diluted systems. In the following, we explain the CA in the case that only the nearest
neighbour interactions are taken into account for simplicity since the extension to a general
case is straightforward. When two kinds of magnetic ion, A and B, coexist and only the nearest
neighbour interactions are considered, the magnetization XA and XB can be written in the one-
site approximation of the CA as

XA =
z∑

nA=0

Qz
nA

nA∑

kA=0

DnA
kA

(XA)

nB=z−nA∑

kB=0

DnB
kB

(XB)P
(
2β{J A−A(nA − 2kA) + J A−B(nB − kB)})

= fA(XA, XB)
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Figure 2. Magnetic moments m and the coupling constants between the nearest neighbours Jnn of
Fe–Ni alloys.

and

XB =
z∑

nA=0

Qz
nA

nA∑

kA=0

DnA
kA

(XA)

nB=z−nA∑

kB=0

DnB
kB

(XB)P
(
2β{J B−A(nA − 2kA) + J B−B(nB − kB)})

= fB(XA, XB),

where z is the number of neighbours, P(x) is the Langevin function, P(x) = coth(x) − 1/x
and J A−B is the exchange coupling constant between A and B,

HA = −2J A−A
∑

(i, j)

SA
i · SA

j − 2J A−B
∑

(i, j)

SA
i · SB

j .

The definitions of Qz
n and Dn

k are the same as in the original work [6]:

Qz
n =

(
z
n

)
pn(1 − p)z−n

and

Dn
k (X) =

(
n
k

) (
1 + X

2

)n−k (
1 − X

2

)k

,

where p is the concentration of A. Expanding fA and fB to the first order of XA and XB, we
obtain coupled equations about XA and XB. From the condition that the coupled equations have
a solution other than XA = XB = 0, the magnetic transition temperature of the system can be
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Figure 3. Magnetic moments m and the coupling constants between the nearest neighbours Jnn of
Fe–Co alloys.

obtained. Other neighbours are also taken into account in the same way as the original CA [7].
In the present calculations, we took three different types of neighbours that have relatively large
components of Ji j for the calculation of TC.

3. Results and discussions

The calculated TC are summarized in figure 1. The overall Slater–Pauling-like behaviour of
TC is well reproduced by the present calculation although it underestimates TC in the cases of
weak ferromagnets. This is mainly due to the fact that, for weak ferromagnets, the localized
magnetic moments are not well developed and longitudinal magnetic fluctuation, which is not
considered in the present calculation, plays a role.

The Curie temperature depends on both the magnetization and on Ji j . In figures 2–4, the
changes in the total and local magnetic moments and the coupling constant between the nearest
neighbours, Jnn, for each alloy are shown. Since the coupling constants between the nearest
neighbours Jnn are much larger than those between other neighbours, it might be of primary
importance in determining TC. Thus, for Fe–Ni alloy (bcc), the behaviour of TC is similar to that
of the magnetic moment. For Fe–Ni alloy (fcc), however, the situation is a little different from
the bcc case. From Z = 28.0 down to Z = 26.8, the magnetic moment increases monotonically
while TC has a maximum at Z = 27.0 and then decreases. This behaviour cannot be explained
just by the behaviour of the magnetization. It is clear that this behaviour originates from the
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Figure 4. Magnetic moments m and the coupling constants between the nearest neighbours Jnn of
Mn–Ni, V–Fe and Cr–V alloys.

change in Jnn: Jnn between Fe atoms shows a similar behaviour. Though the maximum of Jnn

is located at Z = 27.2, the Fe concentration is still low and hence the maximum value of TC

occurs in the region of higher concentration where the magnetization further increases.
For Fe–Co alloy (bcc), TC is a maximum at Z = 26.3 while the magnetic moment is a

maximum at Z = 26.2. The behaviour of TC reflects the fact that Jnn between Fe atoms takes a
maximum at Z = 26.3 and Jnn between Fe and Co is also large there. For the fcc Fe–Co alloy
we can see an interesting behaviour of Jnn: as the Fe concentration increases (as Z decreases),
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the magnetic moment increases initially, but suddenly decreases at Z = 26.6 and then vanishes.
This is explained as follows: below Z = 26.7, Jnn between Fe atoms is negative and hence the
system is frustrated. In this situation, the magnetization can no longer be stable.

Behaviours similar to fcc Fe–Co can also be seen for other alloys. In the Mn–Ni alloy, Jnn

between Mn atoms is negative. It is considered that the Ni sites are ferromagnetic while the Mn
sites are local moment disorder states (spin-glass-like state) in the Mn–Ni alloy. The calculated
Jnn reproduces such a character and this is taken into account for the present TC calculation.

V–Fe and Cr–Fe alloys also have negative Jnns. In this case, not only Jnn between V atoms
(Cr atoms) but also that of V (Cr) and Fe atoms is negative. As a result, Fe and V (Cr) couple
antiparallel to each other. In other words, the sign of the magnetic moment of Fe and V (Cr)
is opposite in the low concentration region of V (Cr), as shown in figure 4. Contrary to the fcc
cases, however, the negative Jnns do not cause any frustration in these bcc systems. Both V–Fe
and Cr–Fe alloys have a maximum of TC at Z ∼ 25.8 while such a behaviour cannot be seen
in the behaviour of magnetic moments. This comes from the fact that Jnn between Fe atoms
increases whereas that of Fe and V (Cr) decreases as the V (Cr) concentration increases.

In summary, we applied the KKR-CPA-LDA method to 3d transition metal alloys and
calculated their Curie temperature. The results show that the overall Slater–Pauling-like
behaviour of TC is well reproduced by first-principles calculation.
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